INTRODUCTION

THE COMBAT CASUALTY CARE SPECIAL EDITION

PF Mahoney, TJ Hodgetts, M Midwinter, R Russell

Royal Centre for Defence Medicine

Corresponding Author: Colonel TJ Hodgetts QHP
Honorary Professor of Emergency Medicine
Academic Department of Military Emergency Medicine
Institute of Research and Development, Vincent Drive,
Birmingham B15 2SQ
T: +44 121 415 8848
E: ProfADMEM@rcdm.bham.ac.uk

<Co> ABC, DCR, DCS, RSI, MERT, MERT-Enhanced, 1:1, IRT;
JTTR these contemporary abbreviations are increasingly in
conversations regarding current operational capability, are
argued about passionately, and are frequently misunderstood.

As an example, take the debate on how and where to perform
surgery. Surgery is best performed by trained people operating
within their capabilities on a patient in as good a physiological
condition as possible, with the right resources, working in a safe,
comfortable environment (this can be summarised as; right
patient, right place, right surgeon, right time).

Forward surgical facilities may allow rapid access to surgery but
as these facilities are required to be manoeuvrable, they are
inevitably more limited in resources compared to larger fixed
facilities. Rapid evacuation from the point of wounding to a
more capable, well resourced, fixed facility could be preferable
but this might also lead to delays in the initial treatment of
critically injured patients if the tactical situation prevented timely
evacuation or the transfer time (or distance) from battlefront to
the larger, more static, facility was excessive.

While much can be achieved even when constraints are
imposed on available resources, there comes a time when the
situation falls below the minimum standard necessary to allow
safe and effective surgery.

This is well argued by Coupland [1] when describing high
mortality rates in casualties with abdominal injury in Kabul,
1992 due to inadequate resuscitation and a lack of post operative
supervision. This was a situation where large numbers of
casualties presented to a hospital with a disrupted infrastructure.

Lessons from the paper include the role of fluids and antibiotics
in extending the timeline to definitive treatment for most patients and the need for realistic triage so that resources are
not wasted on people who are going to die irrespective of whatever interventions are undertaken (this includes those with
injuries outside the scope of current medical practice).

Understanding who will and will not survive may appear
straightforward: a casualty who has been decapitated dies
instantly at the scene. A casualty with a sprained ankle should
survive; but if they are isolated in mountainous or desert terrain
they may perish from the effects of cold, heat and dehydration.
Equally, if they are bleeding from a limb (potentially survivable)
but the tactical situation prevents care reaching them (a minefield
or an ongoing fire-fight) then they may die from a treatable
injury. When comparing outcomes from different datasets, it is
imperative that the definitions of survivability or salvagability are
clearly stated and are comparable. Similarly when examining
other surrogate markers of surgical performance such as
amputation rates and limb salvage rates, there must be explicitly
stated definitions of what is being reported (for example,
amputation rate being: the number of amputated limbs / number
of limb injuries; or number of amputated limbs / number of
attempted limb salvage operations; or number amputated limbs
/ number of battle casualties etc). It is time to be moving towards
accepted international consensus definitions of such terms that
can be accepted within military surgical practice to allow
standardised comparisons.

Studying the trauma populations generated by our own forces
[2-4] and others [5-9] is one part of learning where the lines
between survival and non-survival are drawn and what influences
these, including, of course clinical interventions.

The current Battlefield Advanced Trauma Life Support
(BATLS), [10] course is constructed around this concept. Simple
interventions done well and close to the point of wounding aim
to buy time to move a casualty through the system to the next
level of care.

Planning a deployed military medical service uses the estimate
process and includes who is at risk, from what, and when and
how this risk can be mitigated [11,12]. The plan has to consider
logistic constraints imposed by the military situation.

Returning to surgery, if we can accept that a certain
combination of people, equipment and resources is needed then
the military imperative is to make this capability as physically
light and small as possible to facilitate manoeuvrability without
compromising the surgical capability or standards of care. This
inevitability impinges on the argument about facilities being
'fixed' when operating or when holding the critically ill (until
evacuated) but if a 'laboratory' capability can be reduced to a
hand-held near-patient blood analyzer (i-STAT® machine) and
a portable box developed to maintain the cold chain for packed
red cells and thawed plasma (the Golden Hour Container®),
then there are logistic attractions. Conversely, there are also
obvious limitations of capacity and capability, but this is part of
the commander's balanced risk assessment. This must be based
on tactical considerations but informed by the clinical
consequences. With new approaches to resuscitation, the
classically accepted timelines to surgery may now be no longer be
relevant. With forward deployment of blood products it may be
that these timelines can be extended with obvious implications
for the optimal deployment of surgical resources.

One 'line of risk' can be drawn between 'resuscitation' and
'surgery'. Although this is a simplistic distinction (as surgery is
part of resuscitation and vice versa), it does allow consideration of
concepts. Internal debate has centred on whether components of
resuscitation can be separated from surgery while still being
effective in maintaining clinical performance standards for overall
survival and morbidity. The options are to place a light, ground-
based medical treatment facility in support of forward operations
(that has a smaller logistic footprint than resuscitation and
surgery combined) or to utilise support helicopters (SH) for
primary retrieval direct to the hospital (R2E or R3) from point of
wounding. Eastridge et al [13] describe the American view of
implementing a Military Trauma System on operations in Iraq, modelled on the successes in the civilian systems. The authors describe the evolution of the Trauma System as the conflict matured, from the initial small surgical units of the Army Forward Surgical Teams and Navy Forward Resuscitative Surgical System to larger, more capable, fixed hospitals equivalent to major trauma centres in the USA.

Pivotal to the optimal deployment of surgical capability is the clinical effect that can be realistically achieved in the air during primary retrieval of the critically injured by SH. The operational environment may not permit a period of stabilization on the ground before SH transport because of the predictable physical threat to the aircraft from direct and indirect fire.

The distinction between the BATLS definitions of field resuscitation (Role 1) and Advanced Resuscitation (consultant-based at Roles 2 and 3) has become blurred with consultant-based clinical teams routinely delivering pre-hospital trauma care in Afghanistan: opportunities for extending the armamentarium of clinical interventions on the SH platform continue to be exploited.

This capability has been historically referred to as the Incident Response Team Medical (IRT), but since 2006 in Afghanistan it has been referred to as the Medical Emergency Response Team (MERT) and the MERT-Enhanced (MERT-E), defining two levels of capability. In its basic form MERT has consisted of an RAF State Registered Paramedic and an emergency nurse; MERT-E has added a consultant (emergency medicine or anaesthesia) and a fourth practitioner (medic, nurse, junior doctor or operating department practitioner).

Advanced interventions carried out by the MERT/MERT-E will depend on the exact composition and skill set of the team, but may include surgical airway, chest drainage, intraosseous access [14], blood / blood product administration (doctors only) and rapid sequence induction of anaesthesia to facilitate intubation. The exact impact of individual interventions is difficult to quantify [15], but mortality and morbidity outcomes can be identified through detailed analysis of the Joint Theatre Trauma Registry [16] with clear trends in system performance. The military trauma system differs from the National Health Service in that care is embedded at the point of wounding and begins immediately as self-aid or buddy-aid, complimented by life-saving interventions from the Army Team Medic (1 in 4 combat soldiers), the professional “cap badged” medic, and nurses and doctors at Role 1. This sophisticated, integrated, stepwise trauma system from point of wounding to definitive care is the overarching reason for the demonstrably high rate of “unexpected survivors” [17]. The trend of improvement in the standardised mortality ratio [17] must be attributed to a combination of a paradigm shift in the approach to the combat injured, equipment advances, effective and dynamic training, rigorous audit and governance and, importantly, organisational learning.

This special edition of the Journal of the Royal Army Medical Corps explains the rationale behind emerging clinical doctrine concepts, describes the components of the deployed military trauma system, and demonstrates the outcomes of our recent practice advances.

Events do not stand still. We must continually appraise and adjust our practice as new evidence is presented. What is certain is that intensive daily effort is needed to maintain quality standards and to manage incremental clinical change: what is uncertain is the discontinuous innovation around the corner and how this may significantly change our future practice. We encourage all DMS clinicians to recognise the fragility of the trauma system as being only as strong as its weakest component, and to maintain our excellence in combat casualty care delivery through vigilance for system under-performance, an accepted responsibility for quality data capture, and scholarly initiative.

References